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Abstract

While fixed effects (FE) models are often employed to address potential omitted variables,

we argue that these models’ real utility is in isolating a particular dimension of variance from

panel data for analysis. In addition, we show through novel mathematical decomposition

and simulation that only one-way FE models cleanly capture either the over-time or cross-

sectional dimensions in panel data, while the two-way FE model unhelpfully combines

within-unit and cross-sectional variation in a way that produces un-interpretable answers. In

fact, as we show in this paper, if we begin with the interpretation that many researchers

wrongly assign to the two-way FE model—that it represents a single estimate of X on Y

while accounting for unit-level heterogeneity and time shocks—the two-way FE specification

is statistically unidentified, a fact that statistical software packages like R and Stata obscure

through internal matrix processing.

Introduction

In designing a statistical model, applied researchers take steps to help the model achieve unbi-

asedness, consistency, and efficiency. But an even more important goal is for the model to be

useful. For a model to be useful it must have an interpretation that provides a clear answer to

the research question posed. In this paper, we show that the commonly applied two-way fixed

model (two-way FE) only has such an interpretation in the difference-in-differences (DiD)

causal framework. However, many if not most empirical applications involve data that has a

structure that does not meets the stringent criteria of the DiD framework. So what is the

appropriate interpretation to assign to the two-way FE model coefficient if it cannot be under-

stood as the DiD treatment effect?

A DiD estimate provides a causal effect if certain assumptions are met, such as the parallel

paths assumption [1]. DiD also requires a particular structure for the data being analyzed: two

time periods, denoted as the pre and post-treatment times, and a treatment variable that is 0

for for the non-treated cases and for all cases during the pre-treatment and 1 for the treated

cases during the post-treatment [2, 3]. We define a case to be the unit of analysis in the data
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that is observed at repeated points in time. For example, cases may be countries, individual

respondents in a longitudinal survey, elected officials, and so on. If the data conform to these

specifications, then the two-way FE model’s coefficient is an unbiased and efficient estimate of

the DiD statistic [4]. However, if the data include more than two time periods, then the two-

way FE model’s estimand is not the same as the DiD statistic. As such, the two-way FE model

should not be thought of as a generalized form of a DiD design when there are more than two

time periods in the data, as is often tacitly assumed.

While many recent studies advance our methodological toolkit with regard to better under-

standing DiD as a framework for panel data modeling [5, 6], we do not offer in this paper a

new methodology for DiD estimation. Rather, our aim is to describe how the two-way FE

model can be interpreted and understood in plain language that is relevant to the descriptive

and exploratory analyses for which panel data is often used. While causal inference is very

important, we note that it is often necessary with panel data to estimate models in which strict

causal identification assumptions are implausible but that nonetheless answer important ques-

tions of interest to the research community. In this paper we want to provide researchers with

the tools they need to thoroughly understand the extraordinary resource of the many panel

data sets created in the last three decades. We believe that researchers already have a potent

method of analysis for panel data: the standard linear model with fixed effects on time points

or cases (but not both). Widely employed, but as we show, poorly understood, this simple

specification offers great promise to unlock insights in the data we have.

We re-analyze fixed effects (FE) models from this perspective and argue that their merit is

in capturing distinct dimensions of variation in time-series cross-sectional (TSCS) datasets. By

understanding exactly what FE models do and do not represent in terms of the observed varia-

tion, researchers can employ them confidently and explore empirical results with much more

detail than is commonly done. Establishing what utility FE models have should also help

resolve ongoing debates on how to best represent heterogeneity in effects over time (autocorre-

lation) and heterogeneity in effects over space (spatial autocorrelation).

In this paper we mathematically decompose the one-way and two-way FE models in a way

that shows clearly how results from these models should be understood and interpreted.

Including a second set of FEs dramatically changes the quantity estimated and, in a majority of

cases, no longer answers the research question posed. While researchers turn to the two-way

FE model because it supposedly accounts for more omitted variables than a one-way model,

we show that it does so at the cost of the model’s interpretability and usefulness. While our

analysis of the one-way FE model follows the existing literature, our exposition of the two-way

FE model is novel. We are also the first to show both formally and with simulations that if we

begin with the assumptions that many researchers bring to the two-way FE model—that it rep-

resents a single estimate of X on Y while accounting for unit-level heterogeneity and time

shocks—this specification is in fact statistically unidentified. This concerning fact about two-

way FE models has probably remained hidden for so long because statistical software packages

like R and Stata employ hidden matrix processing to work around the unidentifiability.

We urge researchers to choose between models by taking into consideration the way in

which parameters must be interpreted. A correct answer to the wrong question is as useless as

the wrong answer to the right question. There is little to be gained by applying models that

result in answers that are irrelevant to the fundamental question at hand, and there are well-

known strategies to address omitted variable bias that do not result in uninterpretable models,

such as including relevant control variables and employing research designs that can explicitly

draw the comparisons of interest in the data. If such strategies are unavailable or do not work,

then researchers should present the correct model and provide warnings about issues they

were unable to address rather than employ a model that cannot be understandably interpreted.
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Because of the restrictive assumptions and difficulty in substantive interpretation of the two-

way FE model, we do not recommend that applied researchers rely on this model except for

situations in which the model’s interpretation exactly matches the researcher’s intended

research question and the model’s assumptions are taken into account.

The use of one-way and two-way FEs in applied research

Our reason for focusing on fixed effects models is because these are some of the most popular

estimation tools in political science. To document this, we coded papers in the general interest

journals in political science—The American Political Science Review, The American Journal of
Political Science, and The Journal of Politics—dating back to 1976. We coded each paper that

used the term “fixed effect” for whether the model employed one-way FEs on cases, one-way FEs

on time points, or two-way FEs. The results of this analysis are shown in Fig 1. Fixed effects mod-

els are used in a truly astonishing number of papers even considering only these three journals.

The additional trend that is apparent from this figure is the growing share of two-way FE

models over other FE models. The growing dominance of this model is what motivated this

work as the review of papers showed there is no universally agreed-upon interpretation of this

model in terms of the underlying dimensions of variation in the data. Researchers usually report

the two-way FE model or a two-way and one-way FE model without much consideration to

their differences and with the assertion that the two-way FE represents the robust effect of X on

Y. Given how strongly political scientists rely on these models, we believe that a thorough re-

assessment of these models would benefit applied research in the discipline. As Fig 2 shows,

most of the papers published in the top 3 journals in the last three decades have had more than

two cases and two time points, rendering them outside of the standard DiD framework.

Before we proceed further, we define the important models and terms under consideration in

this paper. We begin with a review of notation for FE models. All of the FE models we describe

Fig 1. Fixed effects models in political science over time.

https://doi.org/10.1371/journal.pone.0231349.g001
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can be estimated with classical OLS by including indicators for cases, time points, or both in the

model along with the independent variables. First we define the two versions of the one-way FE

models: the case FE model and the time FE model. The case FE model with one regressor is

yit ¼ ai þ bxit þ εit; ð1Þ

where i denotes cases and t denotes time points, αi represents case-specific intercepts, the β coef-

ficient is fixed across cases, and εit represents residuals. The model may include a global inter-

cept while excluding one case-specific intercept to avoid collinearity. Similarly, the time FE

model with one regressor is

yit ¼ at þ bxit þ εit; ð2Þ

where αt represents time-specific intercepts, and the two-way FE model is

yit ¼ ai þ at þ bxit þ εit: ð3Þ

These models can be considered special cases of multilevel or hierarchical models in which

the case or time-specific intercepts are assumed to have improper uniform prior distributions,

Fig 2. Number of cases (N) and time points (T) in political science panel data papers, 1976–2014.

https://doi.org/10.1371/journal.pone.0231349.g002
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or equivalently normal prior distributions with infinite variance. [7] refer to such models as

“no pooling” because the case or time-specific intercepts are estimated using only the informa-

tion within individual cases or time points [7]. If instead of no pooling, intercepts are esti-

mated using partial pooling by calculating a weighted average of each individual intercept with

the mean across these intercepts [7], then the resulting model is what is referred to in econo-

metrics as a random effects (RE) model. FE models are generally preferred in econometrics

and political science to RE models because of concerns that the intercepts, considered part of

the residual in RE models, could be endogenous to the regressors in a linear model [8],

although increasingly multilevel models are also being employed in these disciplines.

Unfortunately, the phrases “fixed effect” and “random effect” take on different meanings in

different disciplines, leading to some confusion that we would like to avoid. In multilevel

modeling “random effect” refers to coefficients that vary by group and “fixed effect” refers to

coefficients that are fixed across groups [7]. In this paper we follow the conventions in econo-

metrics and define “fixed effect” to refer to a model in which case or time-specific intercepts

are estimated via OLS with no informative prior distribution, and “random effect” to refer to

the partial pooling model. Going forward, our focus is on fixed effect models, though the inter-

pretation of intercepts as representing dimensions of variance is still useful for researchers

employing multilevel models.

Many authors have come to prefer FE models for their ability to remove potential con-

founders [8]. This approach was the justification for the well-known “Dirty Pool” criticism lev-

eled by [9]: “the problem of ignoring fixed effects is a special case of a more general problem,

that of omitting variables in multivariate regression” (443). This rationale sends a strong mes-

sage to researchers that they must either include fixed effects or accept a biased coefficient.

During our literature review, we encountered several papers in which the author wanted to use

a FE model, but instead employed a different TSCS model because the FE model failed to pro-

duce estimates, usually because of a lack of variation in the variable of interest. As a conse-

quence, these authors believe that a model which could not fit their data must in fact be the

right model, a sign that incorrect interpretations of these models are having a serious effect on

research practice. To take one example, [10] does not use a one-way case FE model because

“fixed effects leads to too many observations dropping from the analysis” (709). In Donno’s

case, the independent variable of interest is electoral system, a variable which will only rarely

change over time within countries. As a result, the inclusion of case FEs results in all countries

dropping from the model that did not experience at least one change in electoral system, such

as the United States. As we explain elsewhere in this paper, the problem is not that variation in

electoral systems does not exist, but rather that it mostly does not exist within cases, which is

the dimension of variation on which the case FE estimator operates. This preference for case

FEs, even in situations when the variation appears more appropriate for time FEs, is what we

argue explains the small number of time FE models in published work, as illustrated by the

narrow region representing one-way (time) FE models in Fig 1.

Increasingly, scholars are revising our understanding of fixed effects papers across disci-

plines. Two recent papers are of particular importance in this regard. First, [11] show that the

assumptions researchers use when evaluating fixed effects models do not in fact correspond to

their research questions of interest. Second, [12] use a decomposition of fixed effects models in

terms of weights that allows them to re-construct the estimator as a weighted average, permit-

ting non-parametric inference. Both of these recent articles suggest that there is growing

momentum for a revision of how fixed effects models are employed in analytic research.

In one sign of this trend, scholars have begun to examine FE models in terms of the poten-

tial outcomes framework [12, 13], which allows researchers to avoid assuming that a single lin-

ear fixed effects specification must be correct. At the same time, the potential outcomes
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framework is limited in that it cannot decide which potential outcomes are most relevant to a

research question. As such, even though our research does not emphasize the potential out-

comes framework, we do believe that the questions we raise for interpretation are relevant for

researchers working in this field as it is still necessary to interpret average treatment effects in

terms of the dimensions of variance within the data.

Many scholars have employed the two-way FE model as a form of DiD [14–18]. Two-way

FE models, as we explain in the S3 Appendix, represent a particular combination of case and

time variation that returns a DiD estimate under this canonical design, but does not estimate

the DiD in more general contexts unless very strong model-based assumptions are used. Fur-

thermore, two-way FEs are not the only way that researchers can estimate a DiD. The standard

DiD design can also be estimated by either a difference of means t-test or a one-way time FE

model depending on how the treatment variable is coded in the dataset [2]. This discrepancy

between what people say the two-way fixed effects model is, and what it in fact is, is what moti-

vates extensions of the DiD framework that can incorporate multi-period panel data [12].

Other than commenting on the relationship between the FE model and difference-in-differ-

ence, we do not further analyze the relationship between the FE model and potential outcomes.

While this is a fruitful area for exploration, our intention is to guide the majority of researchers

who primarily employ FE models with observational data where causal identification can

rarely be assumed. At the same time, we believe our re-interpretation of FE models is helpful

for researchers working in the potential outcomes framework as any estimator must select

exactly which of the N × T potential outcomes in the dataset are relevant to a research question.

For example, [12] develop a within-unit matching estimator which provides a non-parametric

estimation of a one-way FE model for cases, but as we show, that is only one of several possible

questions that can be asked about a TSCS dataset. Regardless of what assumptions the

researcher brings to a TSCS dataset, she must be aware of the two primary dimensions of varia-

tion: over-time and cross-sectional dimensions. As Fig 2 shows, there is in fact more variation

among political science panel data in the cross-section (i.e., the size of N), but most fixed

effects models instead emphasize over-time variation, potentially impoverishing the empirical

results that can be obtained.

Interpretation of FE models

Interpretation of one-way FE coefficients

We begin by reviewing existing derivations of the one-way FE model so that we have a frame-

work in which to compare the one-way and two-way FE models. There are several ways to

implement fixed effects that are equivalent to including dummy variables for cases or for time

points. The one-way case FE estimator can be derived by subtracting the mean across observa-

tions within each case (see [19]; [20]; and [8]). In other words, we transform the outcome as

follows:

y�it ¼ yit � �yi ¼ yit �
1

jTij

X

t2Ti

yit: ð4Þ

Here Ti is the set of time points observed for case i and |Ti| is the number of time points in

this set. This model removes all possible covariates that vary across cases but are fixed across

time, regardless of whether or not those covariates are observed. Consider for example an out-

come given by a linear model

yit ¼ aþ bxit þ dui þ εit ð5Þ
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that includes an independent variable xit that varies both across cases and time points, and an

independent variable ui that varies across cases but is fixed across time. If we apply the trans-

formation in Eq 4 to this linear equation, the result is

yit �
1

jTij

X

t2Ti

yit ¼ aþ bxit þ dui þ εitð Þ �
1

jTij

X

t2Ti

aþ bxit þ dui þ εitð Þ

¼ b xit �
1

jTij

X

t2Ti

xit

 !

þ εit �
1

jTij

X

t2Ti

εit

 !

:

Importantly, the time-fixed covariate ui drops out of the model. The coefficient β in Eq 5 is

then estimated by OLS to be

b̂ caseFE ¼

XN

i¼1

XTi

t¼1

ðxit � �xiÞðyit � �yiÞ

XN

i¼1

XTi

t¼1

ðxit � �xiÞ
2

: ð6Þ

Likewise, the one-way time FE estimator subtracts the mean across observations within

each time point,

y�it ¼ yit � �yt ¼ yit �
1

jNtj

X

i2Nt

yit ð7Þ

where Nt is the set of cases observed at time point t and |Nt| is the number of cases in this set.

Unlike the case FE model, the time FE model cannot eliminate a time-fixed covariate ui; how-

ever it does eliminate variables that vary over time but are fixed across cases. The OLS estimate

of a coefficient β on a covariate xit in a time FE model is

b̂ timeFE ¼

XT

t¼1

XNt

i¼1

ðxit � �xtÞðyit � �ytÞ

XT

t¼1

XNt

i¼1

ðxit � �xtÞ
2

: ð8Þ

Going forward, we refer to this operationalization of fixed effects as the mean-centering
approach.

Another way to implement fixed effects is the data subsetting approach. Case FEs only work

with the time series—not the cross-sections—in the data because a coefficient from this model

is a weighted average of the coefficients we obtain by subsetting the data by case. To demon-

strate this point, note that we can multiply and divide a factor of
PTi

t¼1
ðxit � �xiÞ

2
within the

summation across cases in the numerator in Eq 6,

b̂ caseFE ¼

PN
i¼1

PTi
t¼1
ðxit � �xiÞ

2

PTi
t¼1
ðxit � �xiÞðyit � �yiÞ
PTi

t¼1
ðxit � �xiÞ

2

PN
i¼1

PTi
t¼1
ðxit � �xiÞ

2
; ð9Þ

which can be rewritten as

b̂ caseFE ¼

PN
i¼1
oib̂ i

PN
i¼1
oi

ð10Þ
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where b̂ i is the OLS coefficient estimated using only the data within one case, and

oi ¼
XTi

t¼1

ðxit � �xiÞ
2
¼ Ti � VðxitÞ: ð11Þ

This result implies that running a case FE model is equivalent to taking these steps:

1. Consider only the observations for case 1. Since all of these observations come from the

same case, all of the variation exists over time.

2. Regress y1t on x1t using this subset of the data, and record the coefficient β1.

3. Calculate the variance of the values of x for case 1 and the sample size within this subset T1,

and record the product ω1 = T1 × V(x1t).

4. Repeat steps 1, 2, and 3 for every case in the data.

5. Calculate the case FE coefficient using Eq 10 by taking the average of every case-specific

coefficient βi, weighted by ωi.

Likewise, the time FE estimator produces a coefficient estimate that is a weighted (by vari-

ance and sample size) average of the coefficients we calculate for each cross-section. We pres-

ent this argument again as a formal mathematical proof in S3 Appendix in the supplemental

material.

The data subsetting approach to operationalizing fixed effects leads to a clear interpretation

of one-way FE coefficients. Within the data for one case all variation must occur over time, so

a regression coefficient within this subset must be interpreted as the average effect of a unit-

increase in x on y as each variable changes over time for this specific case. Because case FE

coefficients average these corresponding coefficients across all cases, a case FE coefficient rep-

resents the average effect of a unit-increase in x on y as each variable changes over time, gener-

alized to all cases. Similarly, within one time point in the data all variation is cross-sectional, so

a regression coefficient within this subset must be interpreted as the average effect of a unit-

increase in x on y as each variable changes from case to case at this specific point in time.

Therefore time FE coefficients represent the average effect of a unit-increase in x on y as each

variable changes from case to case, generalized across all time points.

For example, with regard to the question of whether economic development in a country

affects the quality of that country’s democracy, we can investigate individual countries over

time or particular cross-sections of countries in a specific year. If we look only at the time

series for India, we ask “as GDP increases for India over time, how does the quality of its

democracy change over time?” If we use case FEs, we generalize this question across countries:

“as GDP increases for a country over time, how does the quality of its democracy change over

time?” If instead we look at the cross-section that exists in 1990, we ask “how much more dem-

ocratic are wealthier countries than poorer countries in 1990?” Time FEs generalize this ques-

tion to the entire time frame under analysis, and simply ask “how much more democratic are

wealthier countries than poorer countries at any point in time?” If a researcher intends to com-

pare one case to itself over time, it is appropriate to examine individual time series and to use

case FEs; if a researcher intends to compare one case to another at the same point in time, it is

appropriate to examine cross-sections and to use time FEs. If a researcher wishes to allow dif-

ferent cases to experience different over-time effects, or to let different cross-sectional effects

exist at different points in time, it is straightforward to use interactions to extend a one-way FE

specification to account for the desired heterogeneity.
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Employing a one-way FE model in a way that can answer the research question, on the

other hand, does not guarantee that it will do so. That is, selecting a model with a correct inter-

pretation is a necessary but not a sufficient condition for successful statistical analysis. Indeed,

time series in TSCS data may have all of the well known problems of time series in non-panel

contexts: seasonality, non-stationarity, stochastic volatility, and so on. Likewise, cross-sections

in TSCS data may exhibit reverse causality, heteroskedasticity, multicollinearity, etc. Both time

series and cross-sections can also suffer from omitted variable bias if there are unmeasured

confounders along the dimension of variance in the model. While these issues must be

addressed, they must be addressed in a way that still allows researchers to interpret the model.

Confoundedness and the FE model

As the previous section shows, FE models can remove time-invariant omitted variables, case-

invariant omitted variables, or both from the variance of an outcome. Indeed, FE models are

usually chosen and justified for this reason. Here, before moving on to our derivation of the

two-way FE model, we want to address this property of FE models. We argue that the ability of

an FE model to remove these confounders is a side effect of the fact that FEs isolate particular

dimensions of variance in the data to analyze. If a model only looks at variation over time,

then logically, no variable that is fixed over time may impact the outcome. Likewise, no vari-

able that is fixed across cases can explain the cross-sectional differences in the data.

As such, while it is correct to state that FE models remove time-invariant and/or case-

invariant confounders, it is not correct to say that FE models control for confounding variables.

While this distinction is subtle, it is an important one to make as applied research often uses

these terms interchangeably. For a given confounding variable zit that is correlated with the

effect of interest xit, controlling for zit involves obtaining a set of measurements of zit (i.e.,

data) and including those in the regression model with xit. Doing so will produce a β for xit
that is estimated marginal of the β for zit, implicitly averaging over the effect of zit on yit and

blocking the “back-door” path from xit to yit.
However, as the analysis makes clear in the previous section, this kind of marginalization is

not what is occurring in a fixed effects model by either including dummy variables or de-

trending. Rather, a transformation is being applied to xit such that the β represents a distinct

dimension of variation of xit. In other words, the β from the fixed effects model, while it is no

longer affected by the relationship between zit and xit, is not the same as the β for xit that would

have been attained by including a measured covariate for zit in a regression model. This is the

reason we are emphasizing issues of interpretation in this paper rather than the ever-present

threat of lurking omitted variables. Whether or not the fixed effects β is preferable to a naive β
for xit is not a question primarily of bias as fixed effects themselves do not control for any spe-

cific variable. Instead, the first priority in choosing a panel data model should be in identifying

one that can answer the research question posed, with threats to inference a vitally important

but nonetheless secondary criteria.

Interpretation of two-way FE coefficients

We show in this section why the two-way FE model is in a fact a radical departure from the

one-way FE models and produces an often un-interpretable estimate. As with one-way FE

models, we can express the two-way FE model by using a mean-centering or a data subsetting

approach to operationalizing the fixed effects along each dimension. First, we mean-center the

variables within both cases and time points by subtracting the mean along one dimension,

then subtracting the mean of these differences along the other dimension. If the panels in the

data are balanced—exactly the same time points are observed for every case—then [20] and
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others write the two-way FE coefficient estimate that we denote b̂TW as

b̂ TW ¼

XN

i¼1

XT

t¼1

ðyit � �yi � �yt þ �yÞðxit � �xi � �xt þ �xÞ

XN

i¼1

XT

t¼1

ðxit � �xi � �xt þ �xÞ2
: ð12Þ

Covariates that are fixed across time are removed from the model through the subtraction

of the case-means of each variable. Simultaneously, covariates that are fixed across cases are

removed through the subtraction of the time-means.

However, the most useful interpretation of coefficients from the two-way FE model is

revealed when we apply mean-centering to one dimension and data subsetting on the other. It

is not possible to use data subsetting on both cases and time points, because by definition in

TSCS data there is only one observation per case and time, which is insufficient to identify a

regression coefficient. Without loss of generality, we mean-center with regard to cases and we

subset with regard to the time points. Given N cases, T time points, and data yit and xit, mean-

centering requires transforming the variables and residuals as follows:

y�it ¼ yit � �yi; x�it ¼ xit � �xi; ε�it ¼ εit � �ε i:

Then, to apply data subsetting on time points, we consider each time point t 2 {1,. . .,T}

individually and for each we calculate a coefficient βt from the equation

y�it ¼ at þ btx�it þ ε
�
it: ð13Þ

A two-way FE coefficient has an interpretation that generalizes the interpretation of βt in

Eq 13 across time. So, to understand what a two-way FE coefficient means, we must under-

stand what βt means. Equivalently, we can mean-center with regard to time points and apply

data subsetting on cases: then a two-way FE coefficient has an interpretation that generalizes

the interpretation of βi in

y�it ¼ ai þ bix�it þ ε
�
it;

where y�it ¼ yit � �yt , x�it ¼ xit � �xt, and ε�it ¼ εit � �εt.

For clarity, we use real data to illustrate the proper interpretation of the two-way FE coeffi-

cient. We return to the example of GDP and democracy: we employ the Varieties of Democ-

racy (VDEM) polyarchy index for the quality of a country’s democracy, and the measure of

GDP per capita included in the VDEM data [21]. We keep six countries—Brazil, India,

Mexico, Russia, Turkey, and the United States—and the six years from 2000 through 2005.

Fig 3 includes two panels. The left-hand panel is a scatterplot of each variable, untransformed.

The slope of the best-fit line in the left-hand panel is the pooled OLS coefficient. In the right-

hand panel, the country-specific means have been subtracted from both democracy and per

capita GDP. The slope of the best-fit line in the right-hand panel is the coefficient from the

case FE model.

To proceed from the case FE coefficient to the two-way FE coefficient, we subset the data in

the right-hand panel of Fig 3 by year. These six scatterplots are displayed in Fig 4.

Each best-fit line in each panel represents another entry for βt in Eq 13. The two-way FE

coefficient is an average of these slopes, weighted by the amount of data in each scatterplot

times the variance of the x-values in each plot. But to understand the substantive meaning of

the two-way FE coefficient, it is necessary to describe the substantive meaning of the slope in

each of the plots in Fig 4. Consider the plot for the year 2000. The x-axis represents how, in the
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year 2000, a single country’s GDP per capita compares to that country’s mean GDP per capita

from 2000 to 2005. Likewise, the y-axis represents how, in the year 2000, a single country’s

democracy index compares to that country’s mean democracy index from 2000 to 2005. The

negative slope in 2000 means that, on average, relative to a country with a GDP per capita that

is farther below its own over-time mean, another country with a GDP per capita that is closer

to its over-time mean will have a democracy index that is farther below that other country’s

democracy index’s over-time mean. The two-way FE coefficient generalizes this interpretation

to all years between 2000 and 2005 by calculating the weighted average of the six slopes that

appear in Fig 4. The previous two sentences represent our best effort to provide an intuitive

expression of b̂TW in Eq 12.

Fig 3. GDP and democracy data from the varieties of democracy dataset, 2000–2005.

https://doi.org/10.1371/journal.pone.0231349.g003

Fig 4. Subsetting the country-mean centered data by year.

https://doi.org/10.1371/journal.pone.0231349.g004
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This interpretation, or the equivalent one that mean-centers by year and subsets by country,

will often be difficult to communicate and to understand. It is a common mistake to interpret

two-way FE coefficients as if they draw the same comparison in the data that case FE coeffi-

cients speak to, when in fact they speak to a more complex comparison. Even if the two-way

FE coefficients are interpreted correctly, this interpretation may not match the question the

model is intended to answer. In that case, we suggest that applied researchers employ methods

with interpretations that directly answer the research question.

This interpretation of two-way FE coefficients means that the two-way FE model is a com-

plex amalgamation of cross-sectional and temporal effects in TSCS data.

As a result, although the two-way FE estimator removes case-fixed and time-fixed omitted

variables, it does not isolate either the variation across cases or the variation across time in

TSCS data. Thus, if researchers have the goal of removing problematic variation from the

dependent variable, then the two-way FE estimate paradoxically accomplishes the opposite of

what these researchers intend. While the cross-sectional variance is removed from case FEs this

variance is present for time FEs, so it must be present in the two-way FE model as well. Like-

wise, while the temporal variation is omitted from time FEs it exists in case FEs, so it is present

in two-way FEs.

Simulating TSCS data with known within-case and within-time

slopes

The correct interpretation of two-way FE coefficients, as described in the previous section, makes

it clear that the two-way FE model combines over-time and cross-sectional variance in a way is

difficult to understand in substantive terms. In this section, we use simulations to illustrate the

relationship between the two-way FE coefficient and the slopes that exist within subsets of the

data by time point and by case, slopes which the time FE and case FE models can return. In that

way we can gain a better understanding of the substantive meaning of the two-way FE coefficient.

We want to emphasize that our use of a simulation here departs from the purpose simula-

tions commonly serve in methods papers. We are not trying to demonstrate any point about

bias or coverage of FE models estimated with OLS. We are instead trying to shed light on the

relationship between one and two-way FE models to help researchers understand the implica-

tions of including the second set of FEs.

To conduct this simulation, we need a way to generate data that allows us to set the slopes

within case-specific subsets of the data and within time-specific subsets of the data at the same

time. To that end, there are two reasons why we cannot use a standard approach to generating

TSCS data. First, most prior work that we are aware of adopts one of the fixed effects models

and draws the fixed effects and a covariate from a uniform or normal distribution along with

normally-distributed errors and a fixed β, such as in the following:

�it � Nð0; 1Þ

ai � Uð� 2; 2Þ

at � Uð� 2; 2Þ

Xit � Uð� 2; 2Þ

b ¼ 3

yit ¼ ai þ at þ bxit þ �it
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If this data is then estimated with a linear regression model, the resulting coefficient of β
will be unbiased around 3.

This straightforward simulation can be used to justify the two-way FE model, but if the data

are generated from a two-way FE equation then it is tautological that two-way FE outperforms

competitors in modeling the data. As a result, we cannot understand the properties of the two-

way FE model by using data generated from the two-way FE linear equation. Second, it is

impossible to set both the within-time and within-case slopes in a single equation. It is possi-

ble, however, to set both slopes using a simple system of two equations, which is how we

proceed.

To express the within-time slopes, we use a simple bivariate regression model that implies

the following expected value for yit:

EðyitÞ ¼ at þ btxit: ð14Þ

In this model each cross-section has its own intercept αt and its own coefficient, or within-

time slope, on xit, which is βt. If the coefficients on xit within each cross-section are all the

same, then βt = β, 8t, which corresponds to a standard one-way FE regression with fixed effects

on time points.

To express the within-case slopes, we use another simple bivariate regression model that

implies the following expected value for yit:

EðyitÞ ¼ ai þ gixit: ð15Þ

As with Eq 14, the regressions in each time series may have unique intercepts, αi, and

within-case slopes, γi, and if γi = γ, 8i, then we have a standard one-way FE regression with

fixed effects on cases. Since Eqs 14 and 15 describe the same data while focusing on different

dimensions within those data, both equations can simultaneously be true for a given TSCS

dataset. To accomplish this task, we generate data from both Eqs 14 and 15 simultaneously.

Accordingly, we set up a system of simultaneous equations

(EðyitÞ ¼ at þ btxit;

EðyitÞ ¼ ai þ gixit;
ð16Þ

and solve it for E(yit) and xit (see S3 Appendix in the supplemental material for the derivation

of this solution):

xit ¼
ai � at

bt � gi
ð17Þ

and

EðyitÞ ¼
btai � giat

bt � gi
: ð18Þ

To include a stochastic component in the dependent variable, we add an exogenous error

term to E(yit) to generate the outcome,

yit ¼
btai � giat

bt � gi
þ εit: ð19Þ

In the following simulations, we generate data that corresponds both to Eqs 14 and 15 by

generating xit from Eq 17 and yit from Eq 19.
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While our simulation differs from the common method of generating data from either a

linear model with one-way or two-way FE, we maintain that it is the simplest method for simu-

lating TSCS data in which we can control both the within-case and within-time slopes in the

data. To more clearly demonstrate the logic of our approach, we next provide an example of

our simulation in which we simulate 10 cases and 10 time points for 100 total observations.

We set the case-specific intercepts and the time-specific intercepts to values from -3 to 3 in

increments of 0.6. We set the within-case slopes to each be -1, and the within-time slopes to

each be 1. This example is illustrated in Fig 5.

First, in the upper-left-hand panel of Fig 5, we draw lines to represent the best-fit lines

within each case. The slope of each line is equivalent to the coefficient from running a bivariate

regression within each time point or case. In this specific example, the lines are parallel because

we set each slope to -1. Next, in the upper-middle-panel, we draw lines to represent the best-fit

lines within each time point. Again, in this specific example, the lines are parallel because we

set each slope to 1. We plot points exactly at the intersections in this lattice in the upper-right-

hand panel because TSCS data have the specific restriction that every observation exists in

exactly one case and in exactly one time point. The only way to generate data with this prop-

erty is to draw points at the intersections. Finding these intersections is equivalent to solving

the system of equations in 16. Finally, in the bottom-left-hand panel, we add exogenous noise

to the outcome of each datapoint—because the errors are uncorrelated with X, no linear

model run on these data involves an endogeneity bias. Then, as shown in the bottom-middle-

panel, we have constructed a simulated TSCS dataset.

Using this framework we can set the intercepts and slopes to any value so long as the

within-case and within-time slopes are not equal (otherwise two lines would have infinitely

Fig 5. Example of the generation of one TSCS dataset.

https://doi.org/10.1371/journal.pone.0231349.g005

PLOS ONE Interpretation and identification of within-unit and cross-sectional variation in panel data models

PLOS ONE | https://doi.org/10.1371/journal.pone.0231349 April 21, 2020 14 / 22

https://doi.org/10.1371/journal.pone.0231349.g005
https://doi.org/10.1371/journal.pone.0231349


www.manaraa.com

many intersection points). In addition, the lines for each case and for each time point need not

be parallel. In section 1, we allow the within-case and within-time slopes to vary; we generate

each set of slopes from a normal distribution with a variance of 0.25. In section 1, we demon-

strate that the two-way FE estimator is unidentified when both sets of slopes are parallel: that

is, when the within-case slopes do not vary across cases and the within-time slopes do not vary

over time.

Two-way FE coefficients average the within-case and within-time slopes in

the data

We repeatedly generate new TSCS data from Eqs 17 and 19. In each iteration, we set the num-

ber of cases N and the number of time points T each to be 30. We generate the case-specific

intercepts αi, the time-specific intercepts αt, and the exogenous errors εit from standard nor-

mal distributions. We generate varying within-case slopes γi in Eq 15 from a normal distribu-

tion with a mean of -3 and a variance of 0.25. We also draw the within-time slopes, βt in Eq 14,

from normal distributions with variances of 0.25.

As the experimental treatment, we iteratively set the mean of the within-time slopes to be

-2, -1, 0, 1, 2, 3, 4, and 5, and we repeat each simulation 500 times for each of these conditions.

We plot these mean values of βt on the x-axis in Fig 6, and we plot the coefficient estimates

from each model under consideration on the y-axis. We compare the coefficients returned by

two-way, case, and time FEs, pooled OLS, and random effects (RE). We run two versions of

RE: one that integrates over a case-fixed intercept ui, and one that integrates over a time-fixed

intercept vt. The results for each model are aligned in a 3 × 2 grid in Fig 6.

Fig 6. Simulation results, varying the mean of the within-time slopes. For clarity, a small amount of random noise is added to the x-coordinate of

each point.

https://doi.org/10.1371/journal.pone.0231349.g006
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As expected, the case FE coefficient is always about -3, equal to the average within-case

slope, despite the fact that the mean of the within-time slopes changes. The time FE coefficients

fall along the 45-degree line, indicating that this estimator returns the average within-time slope

on average. In contrast, the two-way FE, pooled OLS, and random effects coefficients tend to be

estimated in the intermediate space between the mean within-case and mean within-time

slopes. The pooled OLS estimator is more efficient in this simulation, but we would note that

this does not necessarily demonstrate that the pooled OLS and and random effects estimators

are superior to two-way FEs in general as this simulation does not cover the full range of possi-

ble kinds of TSCS data, including unbalanced panels that are known to affect pooled OLS and

RE. Our intention rather is to show how the two-way FE model is substantively similar to

pooled OLS and random effects in that it pools variation across both dimensions.

Fig 6 shows that case FEs are successful in removing the cross-sectional variation so that

results clearly describe relationships between variables over time because changes in the within-

time slopes do not affect the case FE coefficients. In addition, because time FEs eliminate the

temporal variation and model the cross-sectional variation, the time FE coefficients accurately

estimate this changing within-time slope regardless of its mean value. In contrast, two-way FE

appears to be a pooling estimator like pooled OLS or RE, and depends on both variances.

This result should lead us to reconsider the idea popular in applied work that two-way FEs

account for both cross-sectional and temporal variation in the same way that one-way FE

models do. As we have shown, two-way FE models are fundamentally different than their one-

way cousins despite similarities in the estimating equations. For example, although two-way

FEs include a dummy variable for every case, the two-way FE coefficients change along with

the within-time slope, as do the coefficients from pooled OLS and both random effects models.

Thus, by including time dummies in addition to case dummies, two-way FEs differ substan-

tially from one-way case FEs because this model is once again dependent on both the cross-

sectional and temporal variation.

(Un-)Identifiability of two-way FE estimates

When we use a one-way FE model, we estimate a set of lines—one line for each case or for

each time point—with the same slope but with different intercepts, so that these lines are paral-

lel. This means that, unless an interaction is used or the coefficient is explicitly modeled as ran-

dom, the case FE model assumes that the within-case slopes are fixed across cases and the time

FE model assumes that the within-time slopes are fixed across time points.

Whether or not these two assumptions hold, the case FE model and the time FE model are

identified and return coefficients as they normally do. In contrast, the two-way FE model is

unidentified when the within-case slopes are fixed across cases at the same time as the within-

time slopes are fixed across time points. The proof that the two-way FE coefficient is unidenti-

fied in this case is as follows:

Proof. If the within-time slopes are fixed across time points, then βt = β, 8t in Eq 14, and if

the within-case slopes are fixed across cases, then γi = γ, 8i in Eq 15. Then the system of equa-

tions in 16 becomes

(EðyitÞ ¼ at þ bxit;

EðyitÞ ¼ ai þ gxit;
ð20Þ

and the solution to this system is

xit ¼
ai � at

b � g
; EðyitÞ ¼

bai � gat

b � g
: ð21Þ
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Consider the version of the two-way FE estimator in balanced panels that is listed in Eq 9:

b̂ TW ¼

XN

i¼1

XT

t¼1

ðyit � �yi � �yt þ �yÞðxit � �xi � �xt þ �xÞ

XN

i¼1

XT

t¼1

ðxit � �xi � �xt þ �xÞ2
: ð22Þ

Next, consider just the denominator:

XN

i¼1

XT

t¼1

ðxit � �xi � �xt þ �xÞ2

¼
XN

i¼1

XT

t¼1

xit �

PT
t¼1

xit

T
�

PN
i¼1

xit

N
þ

PN
i¼1

PT
t¼1

xit

NT

 !2

:

ð23Þ

We substitute xit with the solution for xit in Eq 21,

XN

i¼1

XT

t¼1

ai � at

b � g
�

PT
t¼1

ai � at

b � g

T
�

PN
i¼1

ai � at

b � g

N
þ

PN
i¼1

PT
t¼1

ai � at

b � g

NT

0

B
@

1

C
A

2

¼
XN

i¼1

XT

t¼1

ai � at

b � g
�

PT
t¼1
ai � at

Tðb � gÞ
�

PN
i¼1
ai � at

Nðb � gÞ
þ

PN
i¼1

PT
t¼1
ai � at

NTðb � gÞ

 !2

¼

XN

i¼1

XT

t¼1

NTðai � atÞ � N
XT

t¼1

ðai � atÞ � T
XN

i¼1

ðai � atÞ þ
XN

i¼1

XT

t¼1

ðai � atÞ

 !2

N2T2ðb � gÞ
2

¼

XN

i¼1

XT

t¼1

NTai � NTat � N
XT

t¼1

ai þ N
XT

t¼1

at � T
XN

i¼1

ai þ T
XN

i¼1

at þ
XN

i¼1

XT

t¼1
ai �

XN

i¼1

XT

t¼1
at

 !2

N2T2ðb � gÞ
2

¼

XN

i¼1

XT

t¼1

NTai � NTat � NTai þ NT�a t � NT�a i þ NTat þ NT�a i � NT�atð Þ
2

N2T2ðb � gÞ
2

¼

XN

i¼1

XT

t¼1

ð½NTai � NTai� þ ½NTat � NTat� þ ½NT�a t � NT�at� þ ½NT�a i � NT�a i�Þ
2

N2T2ðb � gÞ
2

¼ 0:

ð24Þ

Since the denominator of the two-way FE estimator must be 0 under these conditions, it

follows that the two-way FE model is unidentified.

This un-identifiability will manifest itself as a non-full-rank matrix that will result in an

error in statistical software packages when matrix inversion is attempted. This problem will

occur even if substantial variation exists in both the over-time and cross-section dimensions of

the dataset; in other words, this problem is not a degrees of freedom issue.

The reason that this un-identifiability has not been recognized before is because Stata and R

can deal with the fact that this model is unidentified by automatically selecting one of the fixed

effects to drop from the model, as can also occur with the more common issues of multicolli-

nearity and missing data. As such, this particular problem has likely been ignored when it
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occurs as it is difficult to impossible to diagnose without running regressions within each time

point or case. Generally speaking, if the dropped FE happens to be a dummy variable for a

case, then the resulting coefficient on x resembles the time FE coefficient on x. If the dropped

FE happens to be a dummy variable for a time point, the coefficient resembles the case FE coef-

ficient on x. In both Stata and R, we have noticed that the FE to drop in the case of non-identi-

fication is determined in part by the order in which the FEs are entered into the formula to

run the linear model, although this of course depends on which estimation command is used.

It is important for researchers to pay close attention to whether or not any FEs are dropped in

the final model results, as this issue may be due to model non-identification.

Furthermore, this un-identifiability can manifest itself in very unstable estimates of b̂TW

when the within-case slopes are nearly equal across cases and when the within-time slopes are

nearly equal across time points. That is, when the variance of the within-case slopes across

cases and the variance of the within-time slopes across time points are both close to 0, the vari-

ance of b̂TW approaches infinity. To demonstrate this behavior, we use another simulation.

We use the procedure described in section 1 to generate TSCS datasets with 30 cases and 30

time points each, where case-specific and time-specific intercepts and exogenous error are

drawn from standard normal distributions. For each dataset, we set the mean of the within-

case slopes to be -3 and the mean of the within-time slopes to be 3. In this simulation, we

change the standard deviation of the within-case and within-time slopes as an experimental

treatment. We draw the standard deviations of the slopes from exponential distributions with

rate parameters set at 25 so that the randomly generated standard deviations are clustered at or

near zero. For each pair of drawn standard deviations, we generate 100 TSCS datasets, we run

the two-way FE model on each dataset, and we record the 100 coefficient estimates. We report

the standard deviation of these coefficients, conditional on the standard deviations of the

within-case and within-time slopes, in Fig 7. We repeat the process 1000 times.

Fig 7 is a scatterplot in which the x-axis represents the standard deviation of the within-

time slopes and the y-axis represents the standard deviation of the within-case slopes. The size

of each dot on this graph represents the standard deviation of the two-way FE coefficients esti-

mated across the 100 TSCS datasets with the values of the standard deviations for the within-

case and within-time slopes along the axes. As can be seen, as the standard deviation of the

within-case and within-time slopes approaches zero, the standard deviation of the coefficients

b̂TW from the two-way FE model converges to infinity. With truly fixed slopes, the model

matrix is singular and it is not possible to return a coefficient.

What this simulation reveals is that the variance of two-way FE coefficients will increase

dramatically as slopes are nearly fixed across cases and time points, and this could well result

in very unstable estimates for a particular dataset. The implication of this result is that if we

begin with the assumptions that many researchers bring to the two-way FE model—that it rep-

resents a single estimate of X on Y, with no heterogeneity in the effect, while accounting for

unit-level heterogeneity and time shocks—the two-way FE specification is in fact statistically

unidentified. For these reasons, in addition to the issues we have brought up in this paper, we

would urge applied researchers to be very careful when employing this model for any TSCS

dataset without strong prior knowledge about effect heterogeneity in the cross-section or over-

time dimensions of variance.

We would emphasize that this unidentifiability is not due to the well-known issue with

fixed effects and limited variability in yit along either cases or time points. Rather, the lack of

variability is in the “true” effects of xit, which is what makes the unidentifiability so difficult

if not impossible to diagnose without running a regression with multi-collinearity checks

turned off.
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In S2 Appendix we analyze the empirical question of the relationship between democracy

and economic development, which has received much attention in the panel data literature.

We refer the interested reader there to see the practical ramifications of re-interpreting fixed

effects models with respect to a real research question where one-way and two-way fixed

effects models have widely varying results.

Fig 7. Two-way FE estimates with almost-fixed within-case and within-time slopes. The value of b̂ TW is equal to the coefficient on x obtained from a

two-way FE linear regression of the simulated data. The standard deviation of the b̂ TW estimates is calculated from 100 random replicates for the given

values of the standard deviation of the within-case and within-time slopes along the x and y axis.

https://doi.org/10.1371/journal.pone.0231349.g007
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Discussion: Choosing the right model for the research question

Fixed effects models address omitted variable bias by accounting for time-fixed covariates,

case-fixed covariates, or both. But they also change the research question being evaluated by

the model. It is important for researchers to be aware of both of these implications of a FE

specification, to pay attention to how coefficients from the model should be interpreted, and

to choose a model that provides an answer to the desired research question.

We therefore issue a recommendation to applied researchers. We suggest that research

questions be phrased in a way that makes the principal comparison being made explicitly

clear. We then urge researchers to choose a model whose interpretation matches the intended

research question. In particular, we encourage researchers to phrase research questions in a

way that is more specific than “what is the effect of x on y?” In TSCS data, any answer to this

general question pools across a comparison of cases and a comparison of time points, and we

have to assume that the way that cases compare to one another—whether they are countries,

U.S. states, political parties, institutions, elites, or individual survey respondents—is equal to

the way that they compare to themselves over time. Such an assumption does not respect the

nuanced theories that social scientists develop about these cases or about how they change

over time.

The interpretation of a time FE model corresponds to a research question that involves

cross-sectional comparisons, and the interpretation of a case FE model corresponds to a

research question that involves comparisons over time. We emphasize, however, that this heu-

ristic does not solve the estimation problems that can be manifest in TSCS data. The time FE

estimator places the analysis in a cross-sectional context, and all of the problems of cross-sec-

tional work may be present. The case FE estimator places the analysis in a time series context,

and statistical issues with time series data must be addressed. Given that some TSCS methods

add significant complexity to models, we believe it is best to start with a solid basis of what the

effect of x is in a well-defined estimation so that the changes produced by any model exten-

sions can be understood with reference to a simpler base model. Once we start with the goal of

estimating an effect in the cross-sectional or time dimension rather than forcing the two to be

somehow combined to produce one estimate, then it is easier to see what problems still exist

that might obscure the relationship under study.

This approach also provides a useful framework for elaborating upon the one-way FE mod-

els to describe more complex and interactive comparisons. For example, interactive fixed

effects models have become a useful way of exploring conditional relationships in panel data

[22], and our analysis helps elucidate these more sophisticated approaches as well. Further-

more, it encourages the development of new TSCS methods since a method may have a useful

application without having to be the best, catch-all approach for estimation on both dimen-

sions and any combination of the dimensions.

Conclusion

The two-way fixed effects model, an increasingly popular method for modeling TSCS data, is

substantively difficult to interpret because the model’s estimates are a complex amalgamation

of variation in the over-time and cross-sectional effects. While one-way FE models can be

understood as generalizations of the effects that exist within one case or within one time point,

the two-way FE model can only be understood as a generalization of the effect of deviations

from the case-means at a particular point in time, or equivalently, as a generalization of the

effect of deviations from the time-means for each particular case. This interpretation of two-

way FE coefficients is accurate, but is usually difficult to conceptualize and to communicate,

and seldom matches the questions researchers intend to answer.
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Because of the restrictive assumptions and difficulty in substantive interpretation, we do

not recommend that applied researchers rely on the two-way FE model except for situations in

which the assumptions are well-understood, such as the canonical difference-in-difference

design.

We hope that an increased emphasis on interpretation leads methodologists and substan-

tive researchers to think about TSCS data in a new way. Instead of beginning with the standard

linear model and applying a myriad of corrections to account for the features of TSCS data, we

suggest an approach that builds up to a complete and meaningful model from simple constitu-

ent parts. A researcher must first define the essential comparison in the data: the difference

between two cases at a particular point in time, the difference between two points in time for a

particular case, or a more complex and interactive comparison if the question calls for one and

if such a comparison can be clearly described. The researcher must then choose how to pool

across all of these comparisons to generalize a finding and employ the power in the data.

Future work to develop TSCS methods will be most useful to applied researchers if the method

is clear about what it compares and how it generalizes across comparisons.

Supporting information

S1 Appendix. How the two-way FE estimator compares to a difference-in-difference

design. We further explicate on the differences-in-differences model showing algebraically the

relationship between the two specifications.

(PDF)

S2 Appendix. Empirical illustration: Economic development and democracy. In this appen-

dix we replicate and extend recent findings by Acemoglu et al. and Haber and Menaldo on the

relationship between economic development (GDP and oil resources) and democracy, show-

ing how the application of 2-way FE models leads to incorrect conclusions about null effects of

GDP/oil on democracy.

(PDF)

S3 Appendix. Additional proofs. In this appendix we offer additional analysis of 1-way FE

estimators as weighted averages and a derivation of the two-way FE estimator in balanced pan-

els.

(PDF)

Acknowledgments

A previous version of this manuscript was presented at the annual meeting of the American

Political Science Association, Philadelphia, PA, September 2, 2016. We thank Tom Carsey,

Marius Radean, Daniel Gingerich, Jeffery J. Harden, Justin Esarey, and Justin Kirkland for

their comments and advice.

Author Contributions

Conceptualization: Jonathan Kropko, Robert Kubinec.

Data curation: Jonathan Kropko, Robert Kubinec.

Formal analysis: Jonathan Kropko, Robert Kubinec.

Methodology: Jonathan Kropko, Robert Kubinec.

Software: Jonathan Kropko, Robert Kubinec.

PLOS ONE Interpretation and identification of within-unit and cross-sectional variation in panel data models

PLOS ONE | https://doi.org/10.1371/journal.pone.0231349 April 21, 2020 21 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231349.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231349.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231349.s003
https://doi.org/10.1371/journal.pone.0231349


www.manaraa.com

Validation: Jonathan Kropko, Robert Kubinec.

Visualization: Jonathan Kropko, Robert Kubinec.

Writing – original draft: Jonathan Kropko, Robert Kubinec.

Writing – review & editing: Jonathan Kropko, Robert Kubinec.

References
1. Baltagi BH. Econometrics. 5th ed. Springer; 2011.

2. Khandker SR, Koolwal GB, Samad HA. Handbook on Impact Evaluation: Quantitative Methods and

Practices. Washington D.C.: World Bank; 2010.

3. Morgan SL, Winship C. Counterfactuals and Causal Inference: Methods and Principles for Social

Research. New York: Cambridge University Press; 2007.

4. Imbens GW, Wooldridge JM. Recent Developments in the Econometrics of Program Evaluation. Jour-

nal of Economic Literature. 2009; 47(1):5–86. https://doi.org/10.1257/jel.47.1.5

5. Goodman-Bacon A. Difference-in-Differences with Variation in Treatment Timing. NBER. 2018.

6. Bilinski A, Hatfield LA. Nothing to see here? Non-inferiority approaches to parallel trends and other

model assumptions. Archiv. 2020.

7. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Uni-

versity Press; 2006.

8. Wooldridge JM. Econometric Analysis of Cross Section and Panel Data. MIT Press; 2010.

9. Green DP, Kim SY, Yoon DH. Dirty Pool. Internatinal Organization. 2001; 55(2):441–468. https://doi.

org/10.1162/00208180151140630

10. Donno D. Elections and Democratization in Authoritarian Regimes. American Journal of Political Sci-

ence. 2013; 57(3):703–716. https://doi.org/10.1111/ajps.12013

11. Hill TD, Davis AP, Roos JM, French MT. Limitations of Fixed-Effects Models for Panel Data. Sociologi-

cal Perspectives. 2019;In Press. https://doi.org/10.1177/0731121419863785

12. Imai K, Kim IS. When Should We Use Unit Fixed Effects Regression Models for Causal Inference with

Longitudinal Data? American Journal of Political Science. 2019; 63:467–490. https://doi.org/10.1111/

ajps.12417

13. Blackwell M, Glynn A. How to Make Causal Inferences with Time-Series Cross-Sectional under Selec-

tion on Observables. American Political Science Review. 2018; 112(4):1067–1082. https://doi.org/10.

1017/S0003055418000357

14. Bechtel MM, Hainmueller J. How Lasting is Voter Gratitude? An Analysis of the Short- and Long-Term

Electoral Returns to Beneficial Policy. American Journal of Political Science. 2011; 55(4):852–868.

https://doi.org/10.1111/j.1540-5907.2011.00533.x

15. Anzia SF, Berry CR. The Jackie (And Jill) Robinson Effect: Why Do Congresswomen Outperform Con-

gressmen? American Journal of Political Science. 2011; 55(3):478–493. https://doi.org/10.1111/j.1540-

5907.2011.00512.x

16. Condra LN, Shapiro JN. Who Takes the Blame? The Strategic Effects of Collateral Damage. American

Journal of Political Science. 2012; 56(1):167–187. https://doi.org/10.1111/j.1540-5907.2011.00542.x

17. McGhee E, Masket S, Shor B, Rogers S, McCarty N. A Primary Cause of Partisanship? Nomination

Systems and Legislator Ideology. American Journal of Political Science. 2014; 58(2):337–351. https://

doi.org/10.1111/ajps.12070

18. Truex R. The Returns to Office in a’Rubber Stamp’ Parliament. American Political Science Review.

2014; 108(2):235–251. https://doi.org/10.1017/S0003055414000112

19. Cameron AC, Trivedi PK. Microeconometrics: Methods and Applications. Cambridge University Press;

2005.

20. Greene WH. Econometric Analysis. Seventh ed. Prentice Hall; 2012.

21. Coppedge M, Gerring J, Lindberg SI, Skaaning SE, Teorell J, Altman D, et al. V-DEM Dataset v7. Social

Science Research Network. 2017.

22. Xu Y. Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models.

Political Analysis. 2017; 25(1):57–76. https://doi.org/10.1017/pan.2016.2

PLOS ONE Interpretation and identification of within-unit and cross-sectional variation in panel data models

PLOS ONE | https://doi.org/10.1371/journal.pone.0231349 April 21, 2020 22 / 22

https://doi.org/10.1257/jel.47.1.5
https://doi.org/10.1162/00208180151140630
https://doi.org/10.1162/00208180151140630
https://doi.org/10.1111/ajps.12013
https://doi.org/10.1177/0731121419863785
https://doi.org/10.1111/ajps.12417
https://doi.org/10.1111/ajps.12417
https://doi.org/10.1017/S0003055418000357
https://doi.org/10.1017/S0003055418000357
https://doi.org/10.1111/j.1540-5907.2011.00533.x
https://doi.org/10.1111/j.1540-5907.2011.00512.x
https://doi.org/10.1111/j.1540-5907.2011.00512.x
https://doi.org/10.1111/j.1540-5907.2011.00542.x
https://doi.org/10.1111/ajps.12070
https://doi.org/10.1111/ajps.12070
https://doi.org/10.1017/S0003055414000112
https://doi.org/10.1017/pan.2016.2
https://doi.org/10.1371/journal.pone.0231349


www.manaraa.com

© 2020 Kropko, Kubinec. This is an open access article distributed under the
terms of the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/4.0/(the “License”), which permits
unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. Notwithstanding the ProQuest Terms
and Conditions, you may use this content in accordance with the terms of the

License.


